AQA C3 2014 June — Question 3 5 marks

Exam BoardAQA
ModuleC3 (Core Mathematics 3)
Year2014
SessionJune
Marks5
TopicProduct & Quotient Rules

3
    1. Differentiate \(\left( x ^ { 2 } + 1 \right) ^ { \frac { 5 } { 2 } }\) with respect to \(x\).
    2. Given that \(y = \mathrm { e } ^ { 2 x } \left( x ^ { 2 } + 1 \right) ^ { \frac { 5 } { 2 } }\), find the value of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) when \(x = 0\).
  1. A curve has equation \(y = \frac { 4 x - 3 } { x ^ { 2 } + 1 }\). Use the quotient rule to find the \(x\)-coordinates of the stationary points of the curve.
    [0pt] [5 marks]
    \includegraphics[max width=\textwidth, alt={}]{57412ec0-ad97-4418-8ba8-93f1f7d8aac1-06_1855_1709_852_153}