AQA C3 2012 June — Question 9

Exam BoardAQA
ModuleC3 (Core Mathematics 3)
Year2012
SessionJune
TopicProduct & Quotient Rules

9
  1. Given that \(x = \frac { \sin y } { \cos y }\), use the quotient rule to show that $$\frac { \mathrm { d } x } { \mathrm {~d} y } = \sec ^ { 2 } y$$ (3 marks)
  2. Given that \(\tan y = x - 1\), use a trigonometrical identity to show that $$\sec ^ { 2 } y = x ^ { 2 } - 2 x + 2$$
  3. Show that, if \(y = \tan ^ { - 1 } ( x - 1 )\), then $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { x ^ { 2 } - 2 x + 2 }$$ (l mark)
  4. A curve has equation \(y = \tan ^ { - 1 } ( x - 1 ) - \ln x\).
    1. Find the value of the \(x\)-coordinate of each of the stationary points of the curve.
    2. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
    3. Hence show that the curve has a minimum point which lies on the \(x\)-axis.