AQA C3 2012 June — Question 8

Exam BoardAQA
ModuleC3 (Core Mathematics 3)
Year2012
SessionJune
TopicReciprocal Trig & Identities

8
  1. Show that the equation $$\frac { 1 } { 1 + \cos \theta } + \frac { 1 } { 1 - \cos \theta } = 32$$ can be written in the form $$\operatorname { cosec } ^ { 2 } \theta = 16$$
  2. Hence, or otherwise, solve the equation $$\frac { 1 } { 1 + \cos ( 2 x - 0.6 ) } + \frac { 1 } { 1 - \cos ( 2 x - 0.6 ) } = 32$$ giving all values of \(x\) in radians to two decimal places in the interval \(0 < x < \pi\).
    (5 marks)