Show that the equation
$$\frac { 1 } { 1 + \cos \theta } + \frac { 1 } { 1 - \cos \theta } = 32$$
can be written in the form
$$\operatorname { cosec } ^ { 2 } \theta = 16$$
Hence, or otherwise, solve the equation
$$\frac { 1 } { 1 + \cos ( 2 x - 0.6 ) } + \frac { 1 } { 1 - \cos ( 2 x - 0.6 ) } = 32$$
giving all values of \(x\) in radians to two decimal places in the interval \(0 < x < \pi\).
(5 marks)