AQA C3 2009 June — Question 1

Exam BoardAQA
ModuleC3 (Core Mathematics 3)
Year2009
SessionJune
TopicFixed Point Iteration

1
  1. The curve with equation $$y = \frac { \cos x } { 2 x + 1 } , \quad x > - \frac { 1 } { 2 }$$ intersects the line \(y = \frac { 1 } { 2 }\) at the point where \(x = \alpha\).
    1. Show that \(\alpha\) lies between 0 and \(\frac { \pi } { 2 }\).
    2. Show that the equation \(\frac { \cos x } { 2 x + 1 } = \frac { 1 } { 2 }\) can be rearranged into the form $$x = \cos x - \frac { 1 } { 2 }$$
    3. Use the iteration \(x _ { n + 1 } = \cos x _ { n } - \frac { 1 } { 2 }\) with \(x _ { 1 } = 0\) to find \(x _ { 3 }\), giving your answer to three decimal places.
    1. Given that \(y = \frac { \cos x } { 2 x + 1 }\), use the quotient rule to find an expression for \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
    2. Hence find the gradient of the normal to the curve \(y = \frac { \cos x } { 2 x + 1 }\) at the point on the curve where \(x = 0\).