AQA C3 (Core Mathematics 3) 2008 January

Question 1
View details
1
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) when:
    1. \(y = \left( 2 x ^ { 2 } - 5 x + 1 \right) ^ { 20 }\);
    2. \(y = x \cos x\).
  2. Given that $$y = \frac { x ^ { 3 } } { x - 2 }$$ show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { k x ^ { 2 } ( x - 3 ) } { ( x - 2 ) ^ { 2 } }$$ where \(k\) is a positive integer.
Question 2
View details
2
  1. Solve the equation \(\cot x = 2\), giving all values of \(x\) in the interval \(0 \leqslant x \leqslant 2 \pi\) in radians to two decimal places.
  2. Show that the equation \(\operatorname { cosec } ^ { 2 } x = \frac { 3 \cot x + 4 } { 2 }\) can be written as $$2 \cot ^ { 2 } x - 3 \cot x - 2 = 0$$
  3. Solve the equation \(\operatorname { cosec } ^ { 2 } x = \frac { 3 \cot x + 4 } { 2 }\), giving all values of \(x\) in the interval \(0 \leqslant x \leqslant 2 \pi\) in radians to two decimal places.
Question 3
View details
3 The equation $$x + ( 1 + 3 x ) ^ { \frac { 1 } { 4 } } = 0$$ has a single root, \(\alpha\).
  1. Show that \(\alpha\) lies between - 0.33 and - 0.32 .
  2. Show that the equation \(x + ( 1 + 3 x ) ^ { \frac { 1 } { 4 } } = 0\) can be rearranged into the form $$x = \frac { 1 } { 3 } \left( x ^ { 4 } - 1 \right)$$
  3. Use the iteration \(x _ { n + 1 } = \frac { \left( x _ { n } ^ { 4 } - 1 \right) } { 3 }\) with \(x _ { 1 } = - 0.3\) to find \(x _ { 4 }\), giving your answer to three significant figures.
Question 4
View details
4 The functions f and g are defined with their respective domains by $$\begin{array} { l l } \mathrm { f } ( x ) = x ^ { 3 } , & \text { for all real values of } x
\mathrm {~g} ( x ) = \frac { 1 } { x - 3 } , & \text { for real values of } x , x \neq 3 \end{array}$$
  1. State the range of f.
    1. Find fg(x).
    2. Solve the equation \(\operatorname { fg } ( x ) = 64\).
    1. The inverse of g is \(\mathrm { g } ^ { - 1 }\). Find \(\mathrm { g } ^ { - 1 } ( x )\).
    2. State the range of \(\mathrm { g } ^ { - 1 }\).
Question 5
View details
5
    1. Given that \(y = 2 x ^ { 2 } - 8 x + 3\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
    2. Hence, or otherwise, find $$\int _ { 4 } ^ { 6 } \frac { x - 2 } { 2 x ^ { 2 } - 8 x + 3 } d x$$ giving your answer in the form \(k \ln 3\), where \(k\) is a rational number.
  1. Use the substitution \(u = 3 x - 1\) to find \(\int x \sqrt { 3 x - 1 } \mathrm {~d} x\), giving your answer in terms of \(x\).
Question 6
View details
6
  1. Sketch the curve with equation \(y = \operatorname { cosec } x\) for \(0 < x < \pi\).
  2. Use the mid-ordinate rule with four strips to find an estimate for \(\int _ { 0.1 } ^ { 0.5 } \operatorname { cosec } x \mathrm {~d} x\), giving your answer to three significant figures.
Question 7
View details
7
  1. Describe a sequence of two geometrical transformations that maps the graph of \(y = x ^ { 2 }\) onto the graph of \(y = 4 x ^ { 2 } - 5\).
  2. Sketch the graph of \(y = \left| 4 x ^ { 2 } - 5 \right|\), indicating the coordinates of the point where the curve crosses the \(y\)-axis.
    1. Solve the equation \(\left| 4 x ^ { 2 } - 5 \right| = 4\).
    2. Hence, or otherwise, solve the inequality \(\left| 4 x ^ { 2 } - 5 \right| \geqslant 4\).
Question 8
View details
8
  1. Given that \(\mathrm { e } ^ { - 2 x } = 3\), find the exact value of \(x\).
  2. Use integration by parts to find \(\int x \mathrm { e } ^ { - 2 x } \mathrm {~d} x\).
  3. A curve has equation \(y = \mathrm { e } ^ { - 2 x } + 6 x\).
    1. Find the exact values of the coordinates of the stationary point of the curve.
    2. Determine the nature of the stationary point.
    3. The region \(R\) is bounded by the curve \(y = \mathrm { e } ^ { - 2 x } + 6 x\), the \(x\)-axis and the lines \(x = 0\) and \(x = 1\). Find the volume of the solid formed when \(R\) is rotated through \(2 \pi\) radians about the \(x\)-axis, giving your answer to three significant figures.