AQA C2 2006 June — Question 7

Exam BoardAQA
ModuleC2 (Core Mathematics 2)
Year2006
SessionJune
TopicChain Rule

7 At the point \(( x , y )\), where \(x > 0\), the gradient of a curve is given by $$\frac { \mathrm { d } y } { \mathrm {~d} x } = 3 x ^ { \frac { 1 } { 2 } } + \frac { 16 } { x ^ { 2 } } - 7$$
    1. Verify that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) when \(x = 4\).
      (1 mark)
    2. Write \(\frac { 16 } { x ^ { 2 } }\) in the form \(16 x ^ { k }\), where \(k\) is an integer.
    3. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
    4. Hence determine whether the point where \(x = 4\) is a maximum or a minimum, giving a reason for your answer.
  1. The point \(P ( 1,8 )\) lies on the curve.
    1. Show that the gradient of the curve at the point \(P\) is 12 .
    2. Find an equation of the normal to the curve at \(P\).
    1. Find \(\int \left( 3 x ^ { \frac { 1 } { 2 } } + \frac { 16 } { x ^ { 2 } } - 7 \right) \mathrm { d } x\).
    2. Hence find the equation of the curve which passes through the point \(P ( 1,8 )\).