AQA C1 2014 June — Question 6 7 marks

Exam BoardAQA
ModuleC1 (Core Mathematics 1)
Year2014
SessionJune
Marks7
TopicCircles

6 The diagram shows a curve and a line which intersect at the points \(A , B\) and \(C\).
\includegraphics[max width=\textwidth, alt={}, center]{f2124c89-79de-4758-b7b8-ff273345b9dd-7_574_844_349_609} The curve has equation \(y = x ^ { 3 } - x ^ { 2 } - 5 x + 7\) and the straight line has equation \(y = x + 7\). The point \(B\) has coordinates ( 0,7 ).
    1. Show that the \(x\)-coordinates of the points \(A\) and \(C\) satisfy the equation $$x ^ { 2 } - x - 6 = 0$$
    2. Find the coordinates of the points \(A\) and \(C\).
  1. Find \(\int \left( x ^ { 3 } - x ^ { 2 } - 5 x + 7 \right) \mathrm { d } x\).
  2. Find the area of the shaded region \(R\) bounded by the curve and the line segment \(A B\).
    [0pt] [4 marks]
    \(7 \quad\) A circle with centre \(C\) has equation \(x ^ { 2 } + y ^ { 2 } - 10 x + 12 y + 41 = 0\). The point \(A ( 3 , - 2 )\) lies on the circle.