4 The curve with equation \(y = x ^ { 3 } - 5 x ^ { 2 } + 7 x - 3\) is sketched below.
\includegraphics[max width=\textwidth, alt={}, center]{3729de55-7139-4f41-8584-640f173c0e09-3_444_588_411_717}
The curve touches the \(x\)-axis at the point \(A ( 1,0 )\) and cuts the \(x\)-axis at the point \(B\).
- Use the factor theorem to show that \(x - 3\) is a factor of
$$\mathrm { p } ( x ) = x ^ { 3 } - 5 x ^ { 2 } + 7 x - 3$$
- Hence find the coordinates of \(B\).
- The point \(M\), shown on the diagram, is a minimum point of the curve with equation \(y = x ^ { 3 } - 5 x ^ { 2 } + 7 x - 3\).
- Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
- Hence determine the \(x\)-coordinate of \(M\).
- Find the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) when \(x = 1\).
- Find \(\int \left( x ^ { 3 } - 5 x ^ { 2 } + 7 x - 3 \right) \mathrm { d } x\).
- Hence determine the area of the shaded region bounded by the curve and the coordinate axes.