AQA C1 2009 January — Question 7

Exam BoardAQA
ModuleC1 (Core Mathematics 1)
Year2009
SessionJanuary
TopicCircles

7 A circle with centre \(C\) has equation \(x ^ { 2 } + y ^ { 2 } - 6 x + 10 y + 9 = 0\).
  1. Express this equation in the form $$( x - a ) ^ { 2 } + ( y - b ) ^ { 2 } = r ^ { 2 }$$
  2. Write down:
    1. the coordinates of \(C\);
    2. the radius of the circle.
  3. The point \(D\) has coordinates (7, -2).
    1. Verify that the point \(D\) lies on the circle.
    2. Find an equation of the normal to the circle at the point \(D\), giving your answer in the form \(m x + n y = p\), where \(m , n\) and \(p\) are integers.
    1. A line has equation \(y = k x\). Show that the \(x\)-coordinates of any points of intersection of the line and the circle satisfy the equation $$\left( k ^ { 2 } + 1 \right) x ^ { 2 } + 2 ( 5 k - 3 ) x + 9 = 0$$
    2. Find the values of \(k\) for which the equation $$\left( k ^ { 2 } + 1 \right) x ^ { 2 } + 2 ( 5 k - 3 ) x + 9 = 0$$ has equal roots.
    3. Describe the geometrical relationship between the line and the circle when \(k\) takes either of the values found in part (d)(ii).