AQA C1 2009 January — Question 6

Exam BoardAQA
ModuleC1 (Core Mathematics 1)
Year2009
SessionJanuary
TopicFactor & Remainder Theorem
TypeProve root count with given polynomial

6
  1. The polynomial \(\mathrm { p } ( x )\) is given by \(\mathrm { p } ( x ) = x ^ { 3 } + x - 10\).
    1. Use the Factor Theorem to show that \(x - 2\) is a factor of \(\mathrm { p } ( x )\).
    2. Express \(\mathrm { p } ( x )\) in the form \(( x - 2 ) \left( x ^ { 2 } + a x + b \right)\), where \(a\) and \(b\) are constants.
  2. The curve \(C\) with equation \(y = x ^ { 3 } + x - 10\), sketched below, crosses the \(x\)-axis at the point \(Q ( 2,0 )\).
    \includegraphics[max width=\textwidth, alt={}, center]{22c93dd5-d96a-4e31-8507-9c802e386231-3_444_547_1781_756}
    1. Find the gradient of the curve \(C\) at the point \(Q\).
    2. Hence find an equation of the tangent to the curve \(C\) at the point \(Q\).
    3. Find \(\int \left( x ^ { 3 } + x - 10 \right) \mathrm { d } x\).
    4. Hence find the area of the shaded region bounded by the curve \(C\) and the coordinate axes.