Edexcel D1 2003 November — Question 6

Exam BoardEdexcel
ModuleD1 (Decision Mathematics 1)
Year2003
SessionNovember
TopicMinimum Spanning Trees

6. (a) Define the terms
  1. tree,
  2. spanning tree,
  3. minimum spanning tree.
    (3)
    (b) State one difference between Kruskal's algorithm and Prim's algorithm, to find a minimum spanning tree.
    (1) \begin{figure}[h]
    \captionsetup{labelformat=empty} \caption{Figure 4} \includegraphics[alt={},max width=\textwidth]{75ea31c7-11e7-4dd9-9312-4cf32bba622b-08_894_1529_920_322}
    \end{figure} (c) Use Kruskal's algorithm to find the minimum spanning tree for the network shown in Fig. 4. State the order in which you included the arcs. Draw the minimum spanning tree in Diagram 1 in the answer book and state its length.
    (4) \section*{Figure 5}
    \includegraphics[max width=\textwidth, alt={}]{75ea31c7-11e7-4dd9-9312-4cf32bba622b-09_887_1536_342_258}
    Figure 5 models a car park. Currently there are two pay-stations, one at \(E\) and one at \(N\). These two are linked by a cable as shown. New pay-stations are to be installed at \(B , H , A , F\) and \(C\). The number on each arc represents the distance between the pay-stations in metres. All of the pay-stations need to be connected by cables, either directly or indirectly. The current cable between \(E\) and \(N\) must be included in the final network. The minimum amount of new cable is to be used.
    (d) Using your answer to part (c), or otherwise, determine the minimum amount of new cable needed. Use Diagram 2 to show where these cables should be installed. State the minimum amount of new cable needed.
    (3)