Edexcel D1 2002 June — Question 2

Exam BoardEdexcel
ModuleD1 (Decision Mathematics 1)
Year2002
SessionJune
TopicThe Simplex Algorithm

2. While solving a maximizing linear programming problem, the following tableau was obtained.
Basic variable\(x\)\(y\)\(z\)\(r\)\(s\)\(t\)Value
\(r\)00\(1 \frac { 2 } { 3 }\)10\(- \frac { 1 } { 6 }\)\(\frac { 2 } { 3 }\)
\(y\)01\(3 \frac { 1 } { 3 }\)01\(- \frac { 1 } { 3 }\)\(\frac { 1 } { 3 }\)
\(x\)10-30-1\(\frac { 1 } { 2 }\)1
\(P\)00101111
  1. Explain why this is an optimal tableau.
  2. Write down the optimal solution of this problem, stating the value of every variable.
  3. Write down the profit equation from the tableau. Use it to explain why changing the value of any of the non-basic variables will decrease the value of \(P\).