Edexcel S3 2014 June — Question 7

Exam BoardEdexcel
ModuleS3 (Statistics 3)
Year2014
SessionJune
TopicHypothesis test of a normal distribution

7. A petrol pump is tested regularly to check that the reading on its gauge is accurate. The random variable \(X\), in litres, is the quantity of petrol actually dispensed when the gauge reads 10.00 litres. \(X\) is known to have distribution \(X \sim \mathrm {~N} \left( \mu , 0.08 ^ { 2 } \right)\)
  1. Eight random tests gave the following values of \(x\) $$\begin{array} { l l l l l l l l } 10.01 & 9.97 & 9.93 & 9.99 & 9.90 & 9.95 & 10.13 & 9.94 \end{array}$$
    1. Find a 95\% confidence interval for \(\mu\) to 2 decimal places.
    2. Use your result to comment on the accuracy of the petrol gauge.
  2. A sample mean of 9.96 litres was obtained from a random sample of \(n\) tests. A \(90 \%\) confidence interval for \(\mu\) gave an upper limit of less than 10.00 litres. Find the minimum value of \(n\).