- The continuous random variable \(X\) has a cumulative distribution function
$$\mathrm { F } ( x ) = \left\{ \begin{array} { l r }
0 & x < 1
\frac { x ^ { 3 } } { 10 } + \frac { 3 x ^ { 2 } } { 10 } + a x + b & 1 \leqslant x \leqslant 2
1 & x > 2
\end{array} \right.$$
where \(a\) and \(b\) are constants.
- Find the value of \(a\) and the value of \(b\).
- Show that \(\mathrm { f } ( x ) = \frac { 3 } { 10 } \left( x ^ { 2 } + 2 x - 2 \right) , \quad 1 \leqslant x \leqslant 2\)
- Use integration to find \(\mathrm { E } ( X )\).
- Show that the lower quartile of \(X\) lies between 1.425 and 1.435