Edexcel S2 2020 October — Question 1

Exam BoardEdexcel
ModuleS2 (Statistics 2)
Year2020
SessionOctober
TopicContinuous Probability Distributions and Random Variables
TypeVerify algebraic PDF formula

1. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{3a781851-e2cc-4379-8b8c-abb3060a6019-02_572_497_299_726} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the probability density function \(\mathrm { f } ( x )\) of the random variable \(X\). For \(1 \leqslant x \leqslant 2 , \mathrm { f } ( x )\) is represented by a curve with equation \(\mathrm { f } ( x ) = k \left( \frac { 1 } { 2 } x ^ { 3 } - 3 x ^ { 2 } + a x + 1 \right)\) where \(k\) and \(a\) are constants. For all other values of \(x , \mathrm { f } ( x ) = 0\)
  1. Use algebraic integration to show that \(k ( 12 a - 33 ) = 8\) Given that \(a = 5\)
  2. calculate the mode of \(X\).
    VI4V SIHI NI JIIIM ION OCVIAN SIHI NI IHMM I ON OOVAYV SIHI NI JIIIM ION OO