6. A random variable \(X\) has probability density function given by
$$f ( x ) = \left\{ \begin{array} { c c }
\frac { 1 } { 4 } & 0 \leqslant x < 1
\frac { x ^ { 3 } } { 5 } & 1 \leqslant x \leqslant 2
0 & \text { otherwise }
\end{array} \right.$$
- Use algebraic integration to find \(\mathrm { E } ( X )\)
- Use algebraic integration to find \(\operatorname { Var } ( X )\)
- Define the cumulative distribution function \(\mathrm { F } ( x )\) for all values of \(x\).
- Find the median of \(X\), giving your answer to 3 significant figures.
- Comment on the skewness of the distribution, justifying your answer.