2. John weaves cloth by hand. Emma believes that faults are randomly distributed in John's cloth at a rate of more than 4 per 50 metres of cloth. To check her belief, Emma takes a random sample of 100 metres of the cloth and finds that it contains 14 faults.
- Stating your hypotheses clearly, test, at the \(5 \%\) level of significance, Emma's belief.
Armani also weaves cloth by hand. He knows that faults are randomly distributed in his cloth at a rate of 4 per 50 metres of cloth. Emma decides to buy a large amount of Armani's cloth to sell in pieces of length \(l\) metres. She chooses \(l\) so that the probability of no faults in a piece is exactly 0.9
- Show that \(l = 1.3\) to 2 significant figures.
Emma sells 5000 of these pieces of cloth of length 1.3 metres. She makes a profit of \(\pounds 2.50\) on each piece of cloth that does not contain any faults but a loss of \(\pounds 0.50\) on any piece that contains at least one fault.
- Find Emma's expected profit.