Find median or percentiles

A question is this type if and only if it asks to find the median, quartiles, or other percentiles by solving F(x) = p for a given probability p.

24 questions

CAIE S2 2022 June Q5
5 A random variable \(X\) has probability density function given by $$f ( x ) = \begin{cases} \frac { 3 } { 16 } \left( 4 x - x ^ { 2 } \right) & 2 \leqslant x \leqslant 4
0 & \text { otherwise } \end{cases}$$
  1. Show that \(\mathrm { E } ( X ) = \frac { 11 } { 4 }\).
  2. Find \(\operatorname { Var } ( X )\).
  3. Given that the median of \(X\) is \(m\), find \(\mathrm { P } ( m < X < 3 )\).
CAIE S2 2020 March Q5
5 Bottles of Lanta contain approximately 300 ml of juice. The volume of juice, in millilitres, in a bottle is \(300 + X\), where \(X\) is a random variable with probability density function given by $$f ( x ) = \begin{cases} \frac { 3 } { 4000 } \left( 100 - x ^ { 2 } \right) & - 10 \leqslant x \leqslant 10
0 & \text { otherwise } \end{cases}$$
  1. Find the probability that a randomly chosen bottle of Lanta contains more than 305 ml of juice.
  2. Given that \(25 \%\) of bottles of Lanta contain more than \(( 300 + p ) \mathrm { ml }\) of juice, show that $$p ^ { 3 } - 300 p + 1000 = 0 .$$
  3. Given that \(p = 3.47\), and that \(50 \%\) of bottles of Lanta contain between ( \(300 - q\) ) and ( \(300 + q\) ) ml of juice, find \(q\). Justify your answer.
CAIE S2 2017 June Q5
5
\includegraphics[max width=\textwidth, alt={}, center]{c06524f0-a981-48a6-9af0-c4a3474396b3-06_394_723_258_705} The diagram shows the graph of the probability density function, f , of a random variable \(X\) which takes values between 0 and \(a\) only. It is given that \(\mathrm { P } ( X < 1 ) = 0.25\).
  1. Find, in any order,
    (a) \(\mathrm { P } ( X < 2 )\),
    (b) the value of \(a\),
    (c) \(\mathrm { f } ( x )\).
  2. Find the median of \(X\).
CAIE S2 2021 November Q4
4 A random variable \(X\) has probability density function given by $$f ( x ) = \begin{cases} \frac { 1 } { 18 } \left( 9 - x ^ { 2 } \right) & 0 \leqslant x \leqslant 3
0 & \text { otherwise } \end{cases}$$
  1. Find \(\mathrm { P } ( X < 1.2 )\).
  2. Find \(\mathrm { E } ( X )\).
    The median of \(X\) is \(m\).
  3. Show that \(m ^ { 3 } - 27 m + 27 = 0\).
CAIE S2 2013 June Q6
6 The time in minutes taken by people to read a certain booklet is modelled by the random variable \(T\) with probability density function given by $$f ( t ) = \begin{cases} \frac { 1 } { 2 \sqrt { } t } & 4 \leqslant t \leqslant 9
0 & \text { otherwise } \end{cases}$$
  1. Find the time within which \(90 \%\) of people finish reading the booklet.
  2. Find \(\mathrm { E } ( T )\) and \(\operatorname { Var } ( T )\).
CAIE S2 2017 November Q5
5 A continuous random variable, \(X\), has probability density function given by $$f ( x ) = \begin{cases} \frac { 1 } { 4 } ( x + 1 ) & 0 \leqslant x \leqslant 2
0 & \text { otherwise } \end{cases}$$
  1. Find \(\mathrm { E } ( X )\).
    ................................................................................................................................. .
  2. Find the median of \(X\).
CAIE S2 2012 November Q1
1
\includegraphics[max width=\textwidth, alt={}, center]{879cb813-2380-47a7-bd96-cad0a74d0b4d-2_369_531_255_806} The diagram shows the graph of the probability density function, f , of a random variable \(X\). Find the median of \(X\).
OCR S3 2006 June Q4
4 The continuous random variable \(X\) has probability density function given by $$f ( x ) = \begin{cases} \frac { 4 } { 3 x ^ { 3 } } & 1 \leqslant x < 2
\frac { 1 } { 12 } x & 2 \leqslant x \leqslant 4
0 & \text { otherwise } \end{cases}$$
  1. Find the upper quartile of \(X\).
  2. Find the value of \(a\) for which \(\mathrm { E } \left( X ^ { 2 } \right) = a \mathrm { E } ( X )\).
CAIE FP2 2015 November Q7
7 The continuous random variable \(X\) has probability density function given by $$f ( x ) = \begin{cases} \frac { 1 } { 21 } x ^ { 2 } & 1 \leqslant x \leqslant 4
0 & \text { otherwise } \end{cases}$$ The random variable \(Y\) is defined by \(Y = X ^ { 2 }\). Show that \(Y\) has probability density function given by $$\operatorname { g } ( y ) = \begin{cases} \frac { 1 } { 42 } y ^ { \frac { 1 } { 2 } } & 1 \leqslant y \leqslant 16
0 & \text { otherwise } \end{cases}$$ Find
  1. the median value of \(Y\),
  2. the expected value of \(Y\).
AQA Further AS Paper 2 Statistics 2021 June Q6
11 marks
6 The continuous random variable \(X\) has probability density function $$f ( x ) = \begin{cases} \frac { 1 } { 114 } ( 4 x + 7 ) & 0 \leq x \leq 6
0 & \text { otherwise } \end{cases}$$ 6
  1. Show that the median of \(X\) is 3.87, correct to three significant figures.
    [0pt] [3 marks]
    6
  2. Find the exact value of \(\mathrm { P } ( X > 2 )\)
    6
  3. The continuous random variable \(Y\) has probability density function \(g ( y ) = \begin{cases} \frac { 1 } { 2 } y ^ { 2 } - \frac { 1 } { 6 } y ^ { 3 }1 \leq y \leq 3
    0\text { otherwise } \end{cases}\)
    "
    6
    1. Show that \(\operatorname { Var } \left( \frac { 1 } { Y } \right) = \frac { 2 } { 81 }\)
  4. \multirow[b]{2}{*}{
    [4 marks]
    [4 marks]
    }
Edexcel S2 2018 June Q6
6. A random variable \(X\) has probability density function given by $$f ( x ) = \left\{ \begin{array} { c c } \frac { 1 } { 4 } & 0 \leqslant x < 1
\frac { x ^ { 3 } } { 5 } & 1 \leqslant x \leqslant 2
0 & \text { otherwise } \end{array} \right.$$
  1. Use algebraic integration to find \(\mathrm { E } ( X )\)
  2. Use algebraic integration to find \(\operatorname { Var } ( X )\)
  3. Define the cumulative distribution function \(\mathrm { F } ( x )\) for all values of \(x\).
  4. Find the median of \(X\), giving your answer to 3 significant figures.
  5. Comment on the skewness of the distribution, justifying your answer.
Edexcel S2 2006 January Q5
5. A continuous random variable \(X\) has probability density function \(\mathrm { f } ( x )\) where $$f ( x ) = \begin{cases} k x ( x - 2 ) , & 2 \leq x \leq 3
0 , & \text { otherwise } \end{cases}$$ where \(k\) is a positive constant.
  1. Show that \(k = \frac { 3 } { 4 }\). Find
  2. \(\mathrm { E } ( X )\),
  3. the cumulative distribution function \(\mathrm { F } ( x )\).
  4. Show that the median value of \(X\) lies between 2.70 and 2.75.
AQA S2 2011 January Q6
6 The continuous random variable \(X\) has probability density function defined by $$\mathrm { f } ( x ) = \begin{cases} \frac { 3 } { 8 } x ^ { 2 } & 0 \leqslant x \leqslant \frac { 1 } { 2 }
\frac { 3 } { 32 } & \frac { 1 } { 2 } \leqslant x \leqslant 11
0 & \text { otherwise } \end{cases}$$
  1. Sketch the graph of f.
  2. Show that:
    1. \(\quad \mathrm { P } \left( X \geqslant 8 \frac { 1 } { 3 } \right) = \frac { 1 } { 4 }\);
    2. \(\quad \mathrm { P } ( X \geqslant 3 ) = \frac { 3 } { 4 }\).
  3. Hence write down the exact value of:
    1. the interquartile range of \(X\);
    2. the median, \(m\), of \(X\).
  4. Find the exact value of \(\mathrm { P } ( X < m \mid X \geqslant 3 )\).
AQA S2 2012 January Q6
6 The random variable \(X\) has probability density function defined by $$f ( x ) = \begin{cases} \frac { 1 } { 40 } ( x + 7 ) & 1 \leqslant x \leqslant 5
0 & \text { otherwise } \end{cases}$$
  1. Sketch the graph of f.
  2. Find the exact value of \(\mathrm { E } ( X )\).
  3. Prove that the distribution function F , for \(1 \leqslant x \leqslant 5\), is defined by $$\mathrm { F } ( x ) = \frac { 1 } { 80 } ( x + 15 ) ( x - 1 )$$
  4. Hence, or otherwise:
    1. find \(\mathrm { P } ( 2.5 \leqslant X \leqslant 4.5 )\);
    2. show that the median, \(m\), of \(X\) satisfies the equation \(m ^ { 2 } + 14 m - 55 = 0\).
  5. Calculate the value of the median of \(X\), giving your answer to three decimal places.
Edexcel S2 Q7
7. The time, in hours, taken to run the London marathon is modelled by a continuous random variable \(T\) with the probability density function $$f ( t ) = \begin{cases} c ( t - 2 ) & 2 \leq t < 4
\frac { 2 c ( 7 - t ) } { 3 } & 4 \leq t \leq 7
0 & \text { otherwise } \end{cases}$$
  1. Sketch the function \(\mathrm { f } ( t )\), and show that \(c = \frac { 1 } { 5 }\).
  2. Calculate the median value of \(T\).
  3. Make two critical comments about the model.
Edexcel S2 Q6
6. The continuous random variable \(X\) has the following probability density function: $$f ( x ) = \begin{cases} \frac { 1 } { 6 } x , & 0 \leq x \leq 2
\frac { 1 } { 12 } ( 6 - x ) , & 2 \leq x \leq 6
0 , & \text { otherwise } \end{cases}$$
  1. Sketch \(\mathrm { f } ( x )\) for all values of \(x\).
  2. State the mode of \(X\).
  3. Define fully the cumulative distribution function \(\mathrm { F } ( x )\) of \(X\).
  4. Show that the median of \(X\) is 2.536, correct to 4 significant figures.
OCR MEI Further Statistics Major 2022 June Q12
12 The continuous random variable \(X\) has cumulative distribution function given by $$F ( x ) = \begin{cases} 0 & x < 0
k \left( a x - 0.5 x ^ { 2 } \right) & 0 \leqslant x \leqslant a
1 & x > a \end{cases}$$ where \(a\) and \(k\) are positive constants.
  1. Determine the median of \(X\) in terms of \(a\).
  2. Given that \(a = 10\), determine the probability that \(X\) is within one standard deviation of its mean.
OCR MEI Further Statistics Major 2024 June Q4
4 An archer fires arrows at a circular target of radius 50 cm . The distance in cm that an arrow lands from the centre of the target is modelled by the random variable \(X\), with probability density function given by
\(f ( x ) = \begin{cases} a x & 0 \leqslant x \leqslant 50 ,
0 & \text { otherwise, } \end{cases}\)
where \(a\) is a constant.
  1. Determine the value of \(a\).
  2. Determine the probability that an arrow will land within 5 cm of the centre of the target.
  3. Determine the median distance from the centre of the target that an arrow will land.
WJEC Further Unit 2 2024 June Q2
2. Emlyn aims to produce podcast episodes that are a standard length of time, which he calls the 'target time'. The time, \(X\) minutes, above or below the target time, which he calls the 'allowed time', can be modelled by the following cumulative distribution function. $$F ( x ) = \begin{cases} 0 & x < - 2
\frac { x + 2 } { 5 } & - 2 \leqslant x < 1
\frac { x ^ { 2 } - x + 3 } { 5 } & 1 \leqslant x \leqslant 2
1 & x > 2 \end{cases}$$
  1. Calculate the upper quartile for the 'allowed time'.
  2. Find \(f ( x )\), the probability density function, for all values of \(x\).
    1. Calculate the mean 'allowed time'.
    2. Interpret your answer in context.
Edexcel FS2 AS Specimen Q2
  1. The continuous random variable \(X\) has probability density function
$$f ( x ) = \begin{cases} \frac { 1 } { 18 } ( 11 - 2 x ) & 1 \leqslant x \leqslant 4
0 & \text { otherwise } \end{cases}$$
  1. Find \(\mathrm { P } ( \mathrm { X } < 3 )\)
  2. State, giving a reason, whether the upper quartile of \(X\) is greater than 3, less than 3 or equal to 3 Given that \(\mathrm { E } ( \mathrm { X } ) = \frac { 9 } { 4 }\)
  3. use algebraic integration to find \(\operatorname { Var } ( \mathrm { X } )\) The cumulative distribution function of \(X\) is given by $$F ( x ) = \left\{ \begin{array} { l r } 0 & x < 1
    \frac { 1 } { 18 } \left( 11 x - x ^ { 2 } + c \right) & 1 \leqslant x \leqslant 4
    1 & x > 4 \end{array} \right.$$
  4. Show that \(\mathrm { c } = - 10\)
  5. Find the median of \(X\), giving your answer to 3 significant figures. \section*{Q uestion 2 continued}
SPS SPS FM Statistics 2020 October Q5
5. The continuous random variable \(X\) has probability density function given by $$f ( x ) = \begin{cases} \frac { 4 } { 3 x ^ { 3 } } & 1 \leq x < 2
\frac { 1 } { 12 } x & 2 \leq x \leq 4
0 & \text { otherwise } \end{cases}$$ a) Find the upper quartile of \(X\).
b) Find \(\mathrm { P } \left( \frac { 1 } { 2 } < X \leq 3 \right)\)
c) Find the value of \(a\) for which \(\mathrm { E } \left( X ^ { 2 } \right) = a \mathrm { E } ( X )\).
AQA Further AS Paper 2 Statistics 2020 June Q6
6 The continuous random variable \(X\) has probability density function $$f ( x ) = \left\{ \begin{array} { c c } \frac { 4 } { 45 } \left( x ^ { 3 } - 10 x ^ { 2 } + 29 x - 20 \right) & 1 \leq x \leq 4
0 & \text { otherwise } \end{array} \right.$$ 6
  1. Find \(\mathrm { P } ( X < 2 )\)
    6
  2. Verify that the median of \(X\) is 2.3 , correct to two significant figures.
    6
  3. Find the mean of \(X\).
AQA Further AS Paper 2 Statistics 2022 June Q5
3 marks
5 The continuous random variable \(X\) has probability density function $$f ( x ) = \begin{cases} x ^ { 3 } & 0 < x \leq 1
\frac { 9 } { 1696 } x ^ { 3 } \left( x ^ { 2 } + 1 \right) & 1 < x \leq 3
0 & \text { otherwise } \end{cases}$$ 5
  1. Find \(\mathrm { P } ( X < 1.8 )\), giving your answer to three decimal places.
    [0pt] [3 marks]
    5
  2. Find the lower quartile of \(X\)
    5
  3. 5
  4. Show that \(\mathrm { E } \left( \frac { 1 } { X ^ { 2 } } \right) = \frac { 133 } { 212 }\)
AQA Further Paper 3 Statistics 2022 June Q8
2 marks
8 The continuous random variable \(X\) has cumulative distribution function \(\mathrm { F } ( x )\) where $$\mathrm { F } ( x ) = \begin{cases} 0 & x = 0
\mathrm { e } ^ { k x } - 1 & 0 \leq x \leq 5
1 & x > 5 \end{cases}$$ 8
  1. Show that \(k = \frac { 1 } { 5 } \ln 2\)
    [0pt] [2 marks]
    8
  2. Show that the median of \(X\) is \(a \frac { \ln b } { \ln 2 } - c\), where \(a , b\) and \(c\) are integers to be found.
    8
  3. Show that the mean of \(X\) is \(p - \frac { q } { \ln 2 }\), where \(p\) and \(q\) are integers to be found.