4 The matrices \(\mathbf { A } , \mathbf { B }\) and \(\mathbf { C }\) are given by
$$\mathbf { A } = \left( \begin{array} { l l l }
1 & 2 & 3
2 & 1 & 3
3 & 2 & 5
\end{array} \right) , \mathbf { B } = \left( \begin{array} { r r }
0 & - 2
- 1 & 3
0 & 0
\end{array} \right) \text { and } \mathbf { C } = \left( \begin{array} { r r r }
- 2 & - 1 & 1
1 & 1 & 3
\end{array} \right)$$
- Show that \(\mathbf { C A B } = \left( \begin{array} { r r } 3 & - 7
- 9 & 3 \end{array} \right)\). - Find the equations of the invariant lines, through the origin, of the transformation in the \(x - y\) plane represented by \(\mathbf { C A B }\).
\includegraphics[max width=\textwidth, alt={}, center]{beb9c1f1-1676-4432-a42a-c418ff9f45d8-08_2715_31_106_2016}
Let \(\mathbf { M } = \left( \begin{array} { l l } 3 & 0
0 & 1 \end{array} \right)\). - Give full details of the transformation represented by \(\mathbf { M }\).
- Find the matrix \(\mathbf { N }\) such that \(\mathbf { N M } = \mathbf { C A B }\).