CAIE Further Paper 1 (Further Paper 1) 2024 November

Question 1
View details
1 The sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is such that \(u _ { 1 } = 4\) and \(u _ { n + 1 } = 3 u _ { n } - 2\) for \(n \geqslant 1\).
Prove by induction that \(u _ { n } = 3 ^ { n } + 1\) for all positive integers \(n\).
Question 2
View details
2 The line \(l _ { 1 }\) has equation \(\mathbf { r } = \mathbf { i } + 3 \mathbf { j } - \mathbf { k } + \lambda ( \mathbf { i } - \mathbf { j } - 4 \mathbf { k } )\).
The plane \(\Pi\) contains \(l _ { 1 }\) and is parallel to the vector \(2 \mathbf { i } + 5 \mathbf { j } - 4 \mathbf { k }\).
  1. Find the equation of \(\Pi\), giving your answer in the form \(a x + b y + c z = d\).
    \includegraphics[max width=\textwidth, alt={}, center]{beb9c1f1-1676-4432-a42a-c418ff9f45d8-05_2723_33_99_22} The line \(l _ { 2 }\) is parallel to the vector \(5 \mathbf { i } - 5 \mathbf { j } - 2 \mathbf { k }\).
  2. Find the acute angle between \(l _ { 2 }\) and \(\Pi\).
Question 3
View details
3 It is given that $$\begin{aligned} & \alpha + \beta + \gamma + \delta = 2
& \alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } + \delta ^ { 2 } = 3
& \alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } + \delta ^ { 3 } = 4 \end{aligned}$$
  1. Find the value of \(\alpha \beta + \alpha \gamma + \alpha \delta + \beta \gamma + \beta \delta + \gamma \delta\).
  2. Find the value of \(\alpha ^ { 2 } \beta + \alpha ^ { 2 } \gamma + \alpha ^ { 2 } \delta + \beta ^ { 2 } \alpha + \beta ^ { 2 } \gamma + \beta ^ { 2 } \delta + \gamma ^ { 2 } \alpha + \gamma ^ { 2 } \beta + \gamma ^ { 2 } \delta + \delta ^ { 2 } \alpha + \delta ^ { 2 } \beta + \delta ^ { 2 } \gamma\).
    \includegraphics[max width=\textwidth, alt={}, center]{beb9c1f1-1676-4432-a42a-c418ff9f45d8-06_2717_33_109_2014}
    \includegraphics[max width=\textwidth, alt={}, center]{beb9c1f1-1676-4432-a42a-c418ff9f45d8-07_2723_33_99_22}
  3. It is given that \(\alpha , \beta , \gamma , \delta\) are the roots of the equation $$6 x ^ { 4 } - 12 x ^ { 3 } + 3 x ^ { 2 } + 2 x + 6 = 0 .$$
    1. Find the value of \(\alpha ^ { 4 } + \beta ^ { 4 } + \gamma ^ { 4 } + \delta ^ { 4 }\).
    2. Find the value of \(\alpha ^ { 5 } + \beta ^ { 5 } + \gamma ^ { 5 } + \delta ^ { 5 }\).
Question 4
View details
4 The matrices \(\mathbf { A } , \mathbf { B }\) and \(\mathbf { C }\) are given by $$\mathbf { A } = \left( \begin{array} { l l l } 1 & 2 & 3
2 & 1 & 3
3 & 2 & 5 \end{array} \right) , \mathbf { B } = \left( \begin{array} { r r } 0 & - 2
- 1 & 3
0 & 0 \end{array} \right) \text { and } \mathbf { C } = \left( \begin{array} { r r r } - 2 & - 1 & 1
1 & 1 & 3 \end{array} \right)$$
  1. Show that \(\mathbf { C A B } = \left( \begin{array} { r r } 3 & - 7
    - 9 & 3 \end{array} \right)\).
  2. Find the equations of the invariant lines, through the origin, of the transformation in the \(x - y\) plane represented by \(\mathbf { C A B }\).
    \includegraphics[max width=\textwidth, alt={}, center]{beb9c1f1-1676-4432-a42a-c418ff9f45d8-08_2715_31_106_2016} Let \(\mathbf { M } = \left( \begin{array} { l l } 3 & 0
    0 & 1 \end{array} \right)\).
  3. Give full details of the transformation represented by \(\mathbf { M }\).
  4. Find the matrix \(\mathbf { N }\) such that \(\mathbf { N M } = \mathbf { C A B }\).
Question 5
View details
5 It is given that \(S _ { n } = \sum _ { r = 1 } ^ { n } u _ { r }\), where \(u _ { r } = x ^ { \mathrm { f } ( r ) } - x ^ { \mathrm { f } ( r + 1 ) }\) and \(x > 0\).
  1. Find \(S _ { n }\) in terms of \(n , x\) and the function f .
  2. Given that \(\mathrm { f } ( r ) = \ln r\), find the set of values of \(x\) for which the infinite series $$u _ { 1 } + u _ { 2 } + u _ { 3 } + \ldots$$ is convergent and give the sum to infinity when this exists.
    \includegraphics[max width=\textwidth, alt={}, center]{beb9c1f1-1676-4432-a42a-c418ff9f45d8-10_2716_31_106_2016}
    \includegraphics[max width=\textwidth, alt={}, center]{beb9c1f1-1676-4432-a42a-c418ff9f45d8-11_2723_35_101_20}
  3. Given instead that \(\mathrm { f } ( r ) = 2 \log _ { x } r\) where \(x \neq 1\), use standard results from the List of formulae (MF19) to find \(\sum _ { n = 1 } ^ { N } S _ { n }\) in terms of \(N\). Fully factorise your answer.
Question 6
View details
6 The curve \(C\) has equation \(y = \frac { x ^ { 2 } + 3 } { x ^ { 2 } + 1 }\).
  1. Show that \(C\) has no vertical asymptotes and state the equation of the horizontal asymptote.
  2. Show that \(1 < y \leqslant 3\) for all real values of \(x\).
  3. Find the coordinates of any stationary points on \(C\).
    \includegraphics[max width=\textwidth, alt={}, center]{beb9c1f1-1676-4432-a42a-c418ff9f45d8-12_2718_42_107_2007}
    \includegraphics[max width=\textwidth, alt={}, center]{beb9c1f1-1676-4432-a42a-c418ff9f45d8-13_2720_40_106_18}
  4. Sketch \(C\), stating the coordinates of any intersections with the axes and labelling the asymptote.
  5. Sketch the curve with equation \(y = \frac { x ^ { 2 } + 1 } { x ^ { 2 } + 3 }\) and find the set of values of \(x\) for which \(\frac { x ^ { 2 } + 1 } { x ^ { 2 } + 3 } < \frac { 1 } { 2 }\).
Question 7
View details
7 The curve \(C _ { 1 }\) has polar equation \(r = a ( \cos \theta + \sin \theta )\) for \(- \frac { 1 } { 4 } \pi \leqslant \theta \leqslant \frac { 3 } { 4 } \pi\), where \(a\) is a positive constant.
  1. Find a Cartesian equation for \(C _ { 1 }\) and show that it represents a circle, stating its radius and the Cartesian coordinates of its centre.
  2. Sketch \(C _ { 1 }\) and state the greatest distance of a point on \(C _ { 1 }\) from the pole.
    \includegraphics[max width=\textwidth, alt={}, center]{beb9c1f1-1676-4432-a42a-c418ff9f45d8-14_2721_40_107_2010} The curve \(C _ { 2 }\) with polar equation \(r = a \theta\) intersects \(C _ { 1 }\) at the pole and the point with polar coordinates \(( a \phi , \phi )\).
  3. Verify that \(1.25 < \phi < 1.26\).
  4. Show that the area of the smaller region enclosed by \(C _ { 1 }\) and \(C _ { 2 }\) is equal to $$\frac { 1 } { 2 } a ^ { 2 } \left( \frac { 3 } { 4 } \pi + \frac { 1 } { 3 } \phi ^ { 3 } - \phi + \frac { 1 } { 2 } \cos 2 \phi \right)$$ and deduce, in terms of \(a\) and \(\phi\), the area of the larger region enclosed by \(C _ { 1 }\) and \(C _ { 2 }\).
    If you use the following page to complete the answer to any question, the question number must be clearly shown.