Edexcel S1 2003 January — Question 5

Exam BoardEdexcel
ModuleS1 (Statistics 1)
Year2003
SessionJanuary
TopicDiscrete Probability Distributions
TypeCalculate Var(X) from probability function

5. The discrete random variable \(X\) has probability function $$\mathrm { P } ( X = x ) = \begin{cases} k ( 2 - x ) , & x = 0,1,2
k ( x - 2 ) , & x = 3
0 , & \text { otherwise } \end{cases}$$ where \(k\) is a positive constant.
  1. Show that \(k = 0.25\).
  2. Find \(\mathrm { E } ( X )\) and show that \(\mathrm { E } \left( X ^ { 2 } \right) = 2.5\).
  3. Find \(\operatorname { Var } ( 3 X - 2 )\). Two independent observations \(X _ { 1 }\) and \(X _ { 2 }\) are made of \(X\).
  4. Show that \(\mathrm { P } \left( X _ { 1 } + X _ { 2 } = 5 \right) = 0\).
  5. Find the complete probability function for \(X _ { 1 } + X _ { 2 }\).
  6. Find \(\mathrm { P } \left( 1.3 \leq X _ { 1 } + X _ { 2 } \leq 3.2 \right)\).