Edexcel S1 (Statistics 1) 2003 January

Question 1
View details
  1. The total amount of time a secretary spent on the telephone in a working day was recorded to the nearest minute. The data collected over 40 days are summarised in the table below.
Time (mins)\(90 - 139\)\(140 - 149\)\(150 - 159\)\(160 - 169\)\(170 - 179\)\(180 - 229\)
No. of days81010444
Draw a histogram to illustrate these data
Question 2
View details
2. A car dealer offers purchasers a three year warranty on a new car. He sells two models, the Zippy and the Nifty. For the first 50 cars sold of each model the number of claims under the warranty is shown in the table below.
ClaimNo claim
Zippy3515
Nifty4010
One of the purchasers is chosen at random. Let \(A\) be the event that no claim is made by the purchaser under the warranty and \(B\) the event that the car purchased is a Nifty.
  1. Find \(\mathrm { P } ( A \cap B )\).
  2. Find \(\mathrm { P } \left( A ^ { \prime } \right)\). Given that the purchaser chosen does not make a claim under the warranty,
  3. find the probability that the car purchased is a Zippy.
  4. Show that making a claim is not independent of the make of the car purchased. Comment on this result.
Question 3
View details
3. A drinks machine dispenses coffee into cups. A sign on the machine indicates that each cup contains 50 ml of coffee. The machine actually dispenses a mean amount of 55 ml per cup and \(10 \%\) of the cups contain less than the amount stated on the sign. Assuming that the amount of coffee dispensed into each cup is normally distributed find
  1. the standard deviation of the amount of coffee dispensed per cup in ml ,
  2. the percentage of cups that contain more than 61 ml . Following complaints, the owners of the machine make adjustments. Only \(2.5 \%\) of cups now contain less than 50 ml . The standard deviation of the amount dispensed is reduced to 3 ml . Assuming that the amount of coffee dispensed is still normally distributed,
  3. find the new mean amount of coffee per cup.
    (4)
Question 4
View details
4. A restaurant owner is concerned about the amount of time customers have to wait before being served. He collects data on the waiting times, to the nearest minute, of 20 customers. These data are listed below.
15,14,16,15,17,16,15,14,15,16,
17,16,15,14,16,17,15,25,18,16
  1. Find the median and inter-quartile range of the waiting times. An outlier is an observation that falls either \(1.5 \times\) (inter-quartile range) above the upper quartile or \(1.5 \times\) (inter-quartile range) below the lower quartile.
  2. Draw a boxplot to represent these data, clearly indicating any outliers.
  3. Find the mean of these data.
  4. Comment on the skewness of these data. Justify your answer.
Question 5
View details
5. The discrete random variable \(X\) has probability function $$\mathrm { P } ( X = x ) = \begin{cases} k ( 2 - x ) , & x = 0,1,2
k ( x - 2 ) , & x = 3
0 , & \text { otherwise } \end{cases}$$ where \(k\) is a positive constant.
  1. Show that \(k = 0.25\).
  2. Find \(\mathrm { E } ( X )\) and show that \(\mathrm { E } \left( X ^ { 2 } \right) = 2.5\).
  3. Find \(\operatorname { Var } ( 3 X - 2 )\). Two independent observations \(X _ { 1 }\) and \(X _ { 2 }\) are made of \(X\).
  4. Show that \(\mathrm { P } \left( X _ { 1 } + X _ { 2 } = 5 \right) = 0\).
  5. Find the complete probability function for \(X _ { 1 } + X _ { 2 }\).
  6. Find \(\mathrm { P } \left( 1.3 \leq X _ { 1 } + X _ { 2 } \leq 3.2 \right)\).
Question 6
View details
6. The chief executive of Rex cars wants to investigate the relationship between the number of new car sales and the amount of money spent on advertising. She collects data from company records on the number of new car sales, \(c\), and the cost of advertising each year, \(p\) (£000). The data are shown in the table below.
YearNumber of new car sale, \(c\)Cost of advertising (£000), \(p\)
19904240120
19914380126
19924420132
19934440134
19944430137
19954520144
19964590148
19974660150
19984700153
19994790158
  1. Using the coding \(x = ( p - 100 )\) and \(y = \frac { 1 } { 10 } ( c - 4000 )\), draw a scatter diagram to represent these data. Explain why \(x\) is the explanatory variable.
  2. Find the equation of the least squares regression line of \(y\) on \(x\). $$\text { [Use } \left. \Sigma x = 402 , \Sigma y = 517 , \Sigma x ^ { 2 } = 17538 \text { and } \Sigma x y = 22611 . \right]$$
  3. Deduce the equation of the least squares regression line of \(c\) on \(p\) in the form \(c = a + b p\).
  4. Interpret the value of \(a\).
  5. Predict the number of extra new cars sales for an increase of \(\pounds 2000\) in advertising budget. Comment on the validity of your answer.
    (2)