CAIE Further Paper 1 2023 November — Question 5

Exam BoardCAIE
ModuleFurther Paper 1 (Further Paper 1)
Year2023
SessionNovember
TopicVectors: Lines & Planes

5 The plane \(\Pi _ { 1 }\) has equation \(\mathbf { r } = \mathbf { i } - \mathbf { j } - 2 \mathbf { k } + \lambda ( \mathbf { i } - 2 \mathbf { j } - 3 \mathbf { k } ) + \mu ( 3 \mathbf { i } - \mathbf { k } )\).
  1. Find an equation for \(\Pi _ { 1 }\) in the form \(\mathrm { ax } + \mathrm { by } + \mathrm { cz } = \mathrm { d }\).
    The line \(l\), which does not lie in \(\Pi _ { 1 }\), has equation \(\mathbf { r } = - 3 \mathbf { i } + \mathbf { k } + t ( \mathbf { i } + \mathbf { j } + \mathbf { k } )\).
  2. Show that \(l\) is parallel to \(\Pi _ { 1 }\).
  3. Find the distance between \(l\) and \(\Pi _ { 1 }\).
  4. The plane \(\Pi _ { 2 }\) has equation \(3 x + 3 y + 2 z = 1\). Find a vector equation of the line of intersection of \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\).