CAIE Further Paper 1 (Further Paper 1) 2023 November

Question 1
View details
1
  1. Use standard results from the list of formulae (MF19) to find \(\sum _ { r = 1 } ^ { n } \left( 3 r ^ { 2 } + 3 r + 1 \right)\) in terms of \(n\), simplifying your answer.
  2. Show that $$\frac { 1 } { r ^ { 3 } } - \frac { 1 } { ( r + 1 ) ^ { 3 } } = \frac { 3 r ^ { 2 } + 3 r + 1 } { r ^ { 3 } ( r + 1 ) ^ { 3 } }$$ and hence use the method of differences to find \(\sum _ { r = 1 } ^ { n } \frac { 3 r ^ { 2 } + 3 r + 1 } { r ^ { 3 } ( r + 1 ) ^ { 3 } }\).
  3. Deduce the value of \(\sum _ { r = 1 } ^ { \infty } \frac { 3 r ^ { 2 } + 3 r + 1 } { r ^ { 3 } ( r + 1 ) ^ { 3 } }\).
Question 2
View details
2 Prove by mathematical induction that, for all positive integers \(n\), $$\frac { d ^ { n } } { d x ^ { n } } \left( x ^ { 2 } e ^ { x } \right) = \left( x ^ { 2 } + 2 n x + n ( n - 1 ) \right) e ^ { x }$$
Question 3
View details
3 The matrix \(\mathbf { M }\) is given by \(\mathbf { M } = \left( \begin{array} { l l } k & 0
0 & 1 \end{array} \right) \left( \begin{array} { l l } 1 & 0
1 & 1 \end{array} \right)\), where \(k\) is a constant and \(k \neq 0\) and \(k \neq 1\).
  1. The matrix \(\mathbf { M }\) represents a sequence of two geometrical transformations. State the type of each transformation, and make clear the order in which they are applied.
    The unit square in the \(x - y\) plane is transformed by \(\mathbf { M }\) onto parallelogram \(O P Q R\).
  2. Find, in terms of \(k\), the area of parallelogram \(O P Q R\) and the matrix which transforms \(O P Q R\) onto the unit square.
  3. Show that the line through the origin with gradient \(\frac { 1 } { k - 1 }\) is invariant under the transformation in the \(x - y\) plane represented by \(\mathbf { M }\).
Question 4
View details
4 The cubic equation \(27 x ^ { 3 } + 18 x ^ { 2 } + 6 x - 1 = 0\) has roots \(\alpha , \beta , \gamma\).
  1. Show that a cubic equation with roots \(3 \alpha + 1,3 \beta + 1,3 \gamma + 1\) is $$y ^ { 3 } - y ^ { 2 } + y - 2 = 0$$ The sum \(( 3 \alpha + 1 ) ^ { n } + ( 3 \beta + 1 ) ^ { n } + ( 3 \gamma + 1 ) ^ { n }\) is denoted by \(\mathrm { S } _ { \mathrm { n } }\).
  2. Find the values of \(S _ { 2 }\) and \(S _ { 3 }\).
  3. Find the values of \(S _ { - 1 }\) and \(S _ { - 2 }\).
Question 5
View details
5 The plane \(\Pi _ { 1 }\) has equation \(\mathbf { r } = \mathbf { i } - \mathbf { j } - 2 \mathbf { k } + \lambda ( \mathbf { i } - 2 \mathbf { j } - 3 \mathbf { k } ) + \mu ( 3 \mathbf { i } - \mathbf { k } )\).
  1. Find an equation for \(\Pi _ { 1 }\) in the form \(\mathrm { ax } + \mathrm { by } + \mathrm { cz } = \mathrm { d }\).
    The line \(l\), which does not lie in \(\Pi _ { 1 }\), has equation \(\mathbf { r } = - 3 \mathbf { i } + \mathbf { k } + t ( \mathbf { i } + \mathbf { j } + \mathbf { k } )\).
  2. Show that \(l\) is parallel to \(\Pi _ { 1 }\).
  3. Find the distance between \(l\) and \(\Pi _ { 1 }\).
  4. The plane \(\Pi _ { 2 }\) has equation \(3 x + 3 y + 2 z = 1\). Find a vector equation of the line of intersection of \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\).
Question 6
View details
6 The curve \(C\) has polar equation \(r = \mathrm { e } ^ { - \theta } - \mathrm { e } ^ { - \frac { 1 } { 2 } \pi }\), where \(0 \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\).
  1. Sketch \(C\) and state, in exact form, the greatest distance of a point on \(C\) from the pole.
  2. Find the exact value of the area of the region bounded by \(C\) and the initial line.
  3. Show that, at the point on \(C\) furthest from the initial line, $$1 - e ^ { \theta - \frac { 1 } { 2 } \pi } - \tan \theta = 0$$ and verify that this equation has a root between 0.56 and 0.57 .
Question 7
View details
7 The curve \(C\) has equation \(y = f ( x )\), where \(f ( x ) = \frac { x ^ { 2 } } { x + 1 }\).
  1. Find the equations of the asymptotes of \(C\).
  2. Find the coordinates of any stationary points on \(C\).
  3. Sketch \(C\).
  4. Find the coordinates of any stationary points on the curve with equation \(\mathrm { y } = \frac { 1 } { \mathrm { f } ( \mathrm { x } ) }\).
  5. Sketch the curve with equation \(y = \frac { 1 } { f ( x ) }\) and find, in exact form, the set of values for which $$\frac { 1 } { \mathrm { f } ( x ) } > \mathrm { f } ( x ) .$$ If you use the following page to complete the answer to any question, the question number must be clearly shown.