OCR Further Discrete 2020 November — Question 6

Exam BoardOCR
ModuleFurther Discrete (Further Discrete)
Year2020
SessionNovember
TopicSequences and Series

6 A project is represented by the activity on arc network below.
\includegraphics[max width=\textwidth, alt={}, center]{cc58fb7a-efb6-4548-a8e1-e40abe1eb722-7_410_1095_296_486} The duration of each activity (in minutes) is shown in brackets, apart from activity I.
  1. Suppose that the minimum completion time for the project is 15 minutes.
    1. By calculating the early event times, determine the range of values for \(x\).
    2. By calculating the late event times, determine which activities must be critical. The table shows the number of workers needed for each activity.
      ActivityABCDEFGHIJK
      Workers2112\(n\)121114
  2. Determine the maximum possible value for \(n\) if 5 workers can complete the project in 15 minutes. Explain your reasoning. The duration of activity F is reduced to 1.5 minutes, but only 4 workers are available. The minimum completion time is no longer 15 minutes.
  3. Determine the minimum project completion time in this situation.
  4. Find the maximum possible value for \(x\) for this minimum project completion time.
  5. Find the maximum possible value for \(n\) for this minimum project completion time.