OCR Further Discrete 2020 November — Question 1

Exam BoardOCR
ModuleFurther Discrete (Further Discrete)
Year2020
SessionNovember
TopicGroups

1 This question is about the planar graph shown below.
\includegraphics[max width=\textwidth, alt={}, center]{cc58fb7a-efb6-4548-a8e1-e40abe1eb722-2_567_1317_395_374}
    1. Apply Kuratowski's theorem to verify that the graph is planar.
    2. Use Euler's formula to calculate the number of regions in a planar representation of the graph.
    1. Write down a Hamiltonian cycle for the graph.
    2. By finding a suitable pair of vertices, show that Ore's theorem cannot be used to prove that the graph, as shown above, is Hamiltonian.
    1. Draw the graph formed by using the contractions AB and CF .
    2. Use Ore's theorem to show that this contracted graph is Hamiltonian.