OCR Further Pure Core 1 2024 June — Question 10

Exam BoardOCR
ModuleFurther Pure Core 1 (Further Pure Core 1)
Year2024
SessionJune
TopicFirst order differential equations (integrating factor)

10 A particle \(B\), of mass 3 kg , moves in a straight line and has velocity \(v \mathrm {~ms} ^ { - 1 }\).
At time \(t\) seconds, where \(0 \leqslant t < \frac { 1 } { 4 } \pi\), a variable force of \(- ( 15 \sin 4 \mathrm { t } + 6 \mathrm { v } \tan 2 \mathrm { t } )\) Newtons is applied to \(B\). There are no other forces acting on \(B\). Initially, when \(t = 0 , B\) has velocity \(4.5 \mathrm {~ms} ^ { - 1 }\). The motion of \(B\) can be modelled by the differential equation \(\frac { d v } { d t } + P ( t ) v = Q ( t )\) where \(P ( t )\) and \(\mathrm { Q } ( \mathrm { t } )\) are functions of \(t\).
  1. Find the functions \(\mathrm { P } ( \mathrm { t } )\) and \(\mathrm { Q } ( \mathrm { t } )\).
  2. Using an integrating factor, determine the first time at which \(B\) is stationary according to the model.