OCR Further Mechanics AS 2024 June — Question 7

Exam BoardOCR
ModuleFurther Mechanics AS (Further Mechanics AS)
Year2024
SessionJune
TopicMomentum and Collisions 2

7 A particle \(P\) of mass 3.5 kg is attached to one end of a rod of length 5.4 m . The other end of the rod is hinged at a fixed point \(O\) and \(P\) hangs in equilibrium directly below \(O\). A horizontal impulse of magnitude 44.1 Ns is applied to \(P\).
In an initial model of the subsequent motion of \(P\) the rod is modelled as being light and inextensible and all resistance to the motion of \(P\) is ignored. You are given that \(P\) moves in a circular path in a vertical plane containing \(O\). The angle that the rod makes with the downward vertical through \(O\) is \(\theta\) radians.
  1. Determine the largest value of \(\theta\) in the subsequent motion of \(P\). In a revised model the rod is still modelled as being light and inextensible but the resistance to the motion of \(P\) is not ignored. Instead, it is modelled as causing a loss of energy of 20 J for every metre that \(P\) travels.
  2. Show that according to the revised model, the maximum value of \(\theta\) in the subsequent motion of \(P\) satisfies the following equation. $$343 ( 1 + 2 \cos \theta ) = 400 \theta$$ You are given that \(\theta = 1.306\) is the solution to the above equation, correct to \(\mathbf { 4 }\) significant figures.
  3. Determine the difference in the predicted maximum vertical heights attained by \(P\) using the two models. Give your answer correct to \(\mathbf { 3 }\) significant figures.
  4. Suggest one further improvement that could be made to the model of the motion of \(P\).