AQA Further Paper 2 Specimen — Question 12 18 marks

Exam BoardAQA
ModuleFurther Paper 2 (Further Paper 2)
SessionSpecimen
Marks18
TopicInvariant lines and eigenvalues and vectors

12
  1. Given that 4 is an eigenvalue of \(\mathbf { M }\), find a corresponding eigenvector.
    [0pt] [3 marks] 12
  2. Given that \(\mathbf { M U } = \mathbf { U D }\), where \(\mathbf { D }\) is a diagonal matrix, find possible matrices for \(\mathbf { D }\) and \(\mathbf { U }\). [8 marks]
    \(13 \quad \mathbf { S }\) is a singular matrix such that $$\operatorname { det } \mathbf { S } = \left| \begin{array} { c c c } a & a & x
    x - b & a - b & x + 1
    x ^ { 2 } & a ^ { 2 } & a x \end{array} \right|$$ Express the possible values of \(x\) in terms of \(a\) and \(b\).
    [0pt] [7 marks]