CAIE Further Paper 1 2020 November — Question 6

Exam BoardCAIE
ModuleFurther Paper 1 (Further Paper 1)
Year2020
SessionNovember
TopicCurve Sketching
TypeMultiple transformations including squared

6 Let \(a\) be a positive constant.
  1. The curve \(C _ { 1 }\) has equation \(\mathrm { y } = \frac { \mathrm { x } - \mathrm { a } } { \mathrm { x } - 2 \mathrm { a } }\). Sketch \(C _ { 1 }\). The curve \(C _ { 2 }\) has equation \(\mathrm { y } = \left( \frac { \mathrm { x } - \mathrm { a } } { \mathrm { x } - 2 \mathrm { a } } \right) ^ { 2 }\). The curve \(C _ { 3 }\) has equation \(\mathrm { y } = \left| \frac { \mathrm { x } - \mathrm { a } } { \mathrm { x } - 2 \mathrm { a } } \right|\).
    1. Find the coordinates of any stationary points of \(C _ { 2 }\).
    2. Find also the coordinates of any points of intersection of \(C _ { 2 }\) and \(C _ { 3 }\).
  2. Sketch \(C _ { 2 }\) and \(C _ { 3 }\) on a single diagram, clearly identifying each curve. Hence find the set of values of \(x\) for which \(\left( \frac { x - a } { x - 2 a } \right) ^ { 2 } \leqslant \left| \frac { x - a } { x - 2 a } \right|\).