CAIE Further Paper 1 2020 November — Question 3 1 marks

Exam BoardCAIE
ModuleFurther Paper 1 (Further Paper 1)
Year2020
SessionNovember
Marks1
TopicSequences and series, recurrence and convergence

3
  1. By simplifying \(\left( x ^ { n } - \sqrt { x ^ { 2 n } + 1 } \right) \left( x ^ { n } + \sqrt { x ^ { 2 n } + 1 } \right)\), show that \(\frac { 1 } { x ^ { n } - \sqrt { x ^ { 2 n } + 1 } } = - x ^ { n } - \sqrt { x ^ { 2 n } + 1 }\). [1]
    Let \(u _ { n } = x ^ { n + 1 } + \sqrt { x ^ { 2 n + 2 } + 1 } + \frac { 1 } { x ^ { n } - \sqrt { x ^ { 2 n } + 1 } }\).
  2. Use the method of differences to find \(\sum _ { \mathrm { n } = 1 } ^ { \mathrm { N } } \mathrm { u } _ { \mathrm { n } }\) in terms of \(N\) and \(x\).
  3. Deduce the set of values of \(x\) for which the infinite series $$u _ { 1 } + u _ { 2 } + u _ { 3 } + \ldots$$ is convergent and give the sum to infinity when this exists.