CAIE Further Paper 1 2020 November — Question 4

Exam BoardCAIE
ModuleFurther Paper 1 (Further Paper 1)
Year2020
SessionNovember
TopicInvariant lines and eigenvalues and vectors

4 The matrices \(\mathbf { A }\) and \(\mathbf { B }\) are given by $$\mathbf { A } = \left( \begin{array} { l l } 0 & 1
1 & 0 \end{array} \right) \text { and } \mathbf { B } = \left( \begin{array} { c c } \frac { 1 } { 2 } & - \frac { 1 } { 2 } \sqrt { 3 }
\frac { 1 } { 2 } \sqrt { 3 } & \frac { 1 } { 2 } \end{array} \right)$$
  1. Give full details of the geometrical transformation in the \(x - y\) plane represented by \(\mathbf { A }\).
  2. Give full details of the geometrical transformation in the \(x - y\) plane represented by \(\mathbf { B }\).
    The triangle \(D E F\) in the \(x - y\) plane is transformed by \(\mathbf { A B }\) onto triangle \(P Q R\).
  3. Show that the triangles \(D E F\) and \(P Q R\) have the same area.
  4. Find the matrix which transforms triangle \(P Q R\) onto triangle \(D E F\).
  5. Find the equations of the invariant lines, through the origin, of the transformation in the \(x - y\) plane represented by \(\mathbf { A B }\).