CAIE Further Paper 1 2021 June — Question 4

Exam BoardCAIE
ModuleFurther Paper 1 (Further Paper 1)
Year2021
SessionJune
TopicInvariant lines and eigenvalues and vectors

4 The matrices \(\mathbf { A } , \mathbf { B }\) and \(\mathbf { C }\) are given by $$\mathbf { A } = \left( \begin{array} { c c c } 2 & k & k
5 & - 1 & 3
1 & 0 & 1 \end{array} \right) , \quad \mathbf { B } = \left( \begin{array} { c c } 1 & 0
0 & 1
1 & 0 \end{array} \right) \text { and } \quad \mathbf { C } = \left( \begin{array} { r c c } 0 & 1 & 1
- 1 & 2 & 0 \end{array} \right)$$ where \(k\) is a real constant.
  1. Find \(\mathbf { C A B }\).
  2. Given that \(\mathbf { A }\) is singular, find the value of \(k\).
  3. Using the value of \(k\) from part (b), find the equations of the invariant lines, through the origin, of the transformation in the \(x - y\) plane represented by \(\mathbf { C A B }\).