CAIE Further Paper 1 2021 June — Question 3

Exam BoardCAIE
ModuleFurther Paper 1 (Further Paper 1)
Year2021
SessionJune
TopicProof by induction

3
  1. Prove by mathematical induction that, for all positive integers \(n\), $$\sum _ { r = 1 } ^ { n } \left( 5 r ^ { 4 } + r ^ { 2 } \right) = \frac { 1 } { 2 } n ^ { 2 } ( n + 1 ) ^ { 2 } ( 2 n + 1 )$$
  2. Use the result given in part (a) together with the List of formulae (MF19) to find \(\sum _ { \mathrm { r } = 1 } ^ { \mathrm { n } } \mathrm { r } ^ { 4 }\) in terms of \(n\), fully factorising your answer.