OCR MEI AS Paper 1 2024 June — Question 9

Exam BoardOCR MEI
ModuleAS Paper 1 (AS Paper 1)
Year2024
SessionJune
TopicSUVAT & Travel Graphs

9 Two trains are travelling in the same direction on parallel straight tracks and train A overtakes train B . At time \(t\) seconds after the front of train A overtakes the front of train B the velocities of trains A and B are \(v _ { \mathrm { A } } \mathrm { m } \mathrm { s } ^ { - 1 }\) and \(v _ { \mathrm { B } } \mathrm { ms } ^ { - 1 }\) respectively. The velocity of train A is modelled by \(\mathrm { v } _ { \mathrm { A } } = 25 - 0.6 \mathrm { t }\). The velocity-time graph of train A is shown below.
\includegraphics[max width=\textwidth, alt={}, center]{b5c47a93-ce43-4aa1-ba7f-fbb650523373-5_664_1399_550_242}
  1. A student argues that the speed of train A changes by \(18 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) in 30 seconds so its acceleration is \(0.6 \mathrm {~m} \mathrm {~s} ^ { - 2 }\). Comment on the validity of the student's argument.
  2. When the front of train A overtakes the front of train B , train B has a velocity of \(10 \mathrm {~ms} ^ { - 1 }\). The acceleration of train \(B\) is constant and is modelled as \(0.15 \mathrm {~m} \mathrm {~s} ^ { - 2 }\). Write down the equation for \(v _ { \mathrm { B } }\) in terms of \(t\) that models the velocity of train B .
  3. Draw the velocity-time graph of train B on the copy of the diagram in the Printed Answer Booklet.
  4. Determine the distance between the fronts of the trains at the time when the trains are travelling at the same velocity.
  5. Explain why the model for train A would not be valid for large values of \(t\).