12 The diagram shows the graph of \(\mathrm { f } ( \mathrm { x } ) = \mathrm { k } ( \mathrm { x } - \mathrm { p } ) ( \mathrm { x } - \mathrm { q } )\) where \(k , p\) and \(q\) are constants. The graph passes through the points \(( - 1,0 ) , ( 0 , - 4 )\) and \(( 2,0 )\).
\includegraphics[max width=\textwidth, alt={}, center]{b5c47a93-ce43-4aa1-ba7f-fbb650523373-7_775_638_347_242}
- Find \(\mathrm { f } ( \mathrm { x } )\) in the form \(\mathrm { ax } ^ { 2 } + \mathrm { bx } + \mathrm { c }\).
A cubic curve has gradient function \(f ( x )\). This cubic curve passes through the point \(( 0,8 )\).
- Find the equation of the cubic curve.
- Determine the coordinates of the stationary points of the cubic curve.