CAIE Further Paper 1 (Further Paper 1) 2020 June

Question 1
View details
1 The cubic equation \(7 x ^ { 3 } + 3 x ^ { 2 } + 5 x + 1 = 0\) has roots \(\alpha , \beta , \gamma\).
  1. Find a cubic equation whose roots are \(\alpha ^ { - 1 } , \beta ^ { - 1 } , \gamma ^ { - 1 }\).
  2. Find the value of \(\alpha ^ { - 2 } + \beta ^ { - 2 } + \gamma ^ { - 2 }\).
  3. Find the value of \(\alpha ^ { - 3 } + \beta ^ { - 3 } + \gamma ^ { - 3 }\).
Question 2
View details
2 The sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is such that \(u _ { 1 } = 1\) and \(\mathrm { u } _ { \mathrm { n } + 1 } = 2 \mathrm { u } _ { \mathrm { n } } + 1\) for \(n \geqslant 1\).
  1. Prove by induction that \(u _ { n } = 2 ^ { n } - 1\) for all positive integers \(n\).
  2. Deduce that \(\mathrm { u } _ { 2 \mathrm { n } }\) is divisible by \(\mathrm { u } _ { \mathrm { n } }\) for \(n \geqslant 1\).
Question 3
View details
3 Let \(S _ { n } = 2 ^ { 2 } + 6 ^ { 2 } + 10 ^ { 2 } + \ldots + ( 4 n - 2 ) ^ { 2 }\).
  1. Use standard results from the List of Formulae (MF19) to show that \(S _ { n } = \frac { 4 } { 3 } n \left( 4 n ^ { 2 } - 1 \right)\).
  2. Express \(\frac { \mathrm { n } } { \mathrm { S } _ { \mathrm { n } } }\) in partial fractions and find \(\sum _ { \mathrm { n } = 1 } ^ { \mathrm { N } } \frac { \mathrm { n } } { \mathrm { S } _ { \mathrm { n } } }\) in terms of \(N\).
  3. Deduce the value of \(\sum _ { n = 1 } ^ { \infty } \frac { n } { S _ { n } }\).
Question 4
View details
4 The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { r r r } k & 0 & 2
0 & - 1 & - 1
1 & 1 & - k \end{array} \right)$$ where \(k\) is a real constant.
  1. Show that \(\mathbf { A }\) is non-singular.
    The matrices \(\mathbf { B }\) and \(\mathbf { C }\) are given by $$\mathbf { B } = \left( \begin{array} { r r } 0 & - 3
    - 1 & 3
    0 & 0 \end{array} \right) \text { and } \mathbf { C } = \left( \begin{array} { r r r } - 3 & - 1 & 1
    1 & 1 & 2 \end{array} \right)$$ It is given that \(\mathbf { C A B } = \left( \begin{array} { l l } - 2 & - \frac { 3 } { 2 }
    - 1 & - \frac { 3 } { 2 } \end{array} \right)\).
  2. Find the value of \(k\).
  3. Find the equations of the invariant lines, through the origin, of the transformation in the \(x - y\) plane represented by \(\mathbf { C A B }\).
Question 5
View details
5 The curve \(C\) has polar equation \(r = \operatorname { atan } \theta\), where \(a\) is a positive constant and \(0 \leqslant \theta \leqslant \frac { 1 } { 4 } \pi\).
  1. Sketch \(C\) and state the greatest distance of a point on \(C\) from the pole.
  2. Find the exact value of the area of the region bounded by \(C\) and the half-line \(\theta = \frac { 1 } { 4 } \pi\).
  3. Show that \(C\) has Cartesian equation \(\mathrm { y } = \frac { \mathrm { x } ^ { 2 } } { \sqrt { \mathrm { a } ^ { 2 } - \mathrm { x } ^ { 2 } } }\).
  4. Using your answer to part (b), deduce the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 2 } a \sqrt { 2 } } \frac { x ^ { 2 } } { \sqrt { a ^ { 2 } - x ^ { 2 } } } d x\).
Question 6
View details
6 The curve \(C\) has equation \(\mathrm { y } = \frac { 10 + \mathrm { x } - 2 \mathrm { x } ^ { 2 } } { 2 \mathrm { x } - 3 }\).
  1. Find the equations of the asymptotes of \(C\).
  2. Show that \(C\) has no turning points.
  3. Sketch \(C\), stating the coordinates of the intersections with the axes.
  4. Sketch the curve with equation \(y = \left| \frac { 10 + x - 2 x ^ { 2 } } { 2 x - 3 } \right|\) and find in exact form the set of values of \(x\) for which \(\left| \frac { 10 + x - 2 x ^ { 2 } } { 2 x - 3 } \right| < 4\).
Question 7
View details
7 The lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations \(\mathbf { r } = - 5 \mathbf { j } + \lambda ( 5 \mathbf { i } + 2 \mathbf { k } )\) and \(\mathbf { r } = 4 \mathbf { i } + 2 \mathbf { j } - 2 \mathbf { k } + \mu ( \mathbf { j } + \mathbf { k } )\) respectively. The plane \(\Pi\) contains \(l _ { 1 }\) and is parallel to \(l _ { 2 }\).
  1. Find the equation of \(\Pi\), giving your answer in the form \(a x + b y + c z = d\).
  2. Find the distance between \(l _ { 2 }\) and \(\Pi\).
    The point \(P\) on \(l _ { 1 }\) and the point \(Q\) on \(l _ { 2 }\) are such that \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\).
  3. Show that \(P\) has position vector \(\frac { 55 } { 27 } \mathbf { i } - 5 \mathbf { j } + \frac { 22 } { 27 } \mathbf { k }\) and state a vector equation for \(P Q\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.