2 The sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is such that \(u _ { 1 } = 1\) and \(\mathrm { u } _ { \mathrm { n } + 1 } = 2 \mathrm { u } _ { \mathrm { n } } + 1\) for \(n \geqslant 1\).
- Prove by induction that \(u _ { n } = 2 ^ { n } - 1\) for all positive integers \(n\).
- Deduce that \(\mathrm { u } _ { 2 \mathrm { n } }\) is divisible by \(\mathrm { u } _ { \mathrm { n } }\) for \(n \geqslant 1\).