Edexcel Paper 2 2020 October — Question 7

Exam BoardEdexcel
ModulePaper 2 (Paper 2)
Year2020
SessionOctober
TopicNewton-Raphson method
TypeFind stationary point coordinate

7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e28350e9-5090-4079-97da-e669ef9a5a7a-16_621_799_246_630} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve \(C\) with equation $$y = \frac { 4 x ^ { 2 } + x } { 2 \sqrt { x } } - 4 \ln x \quad x > 0$$
  1. Show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 12 x ^ { 2 } + x - 16 \sqrt { x } } { 4 x \sqrt { x } }$$ The point \(P\), shown in Figure 1, is the minimum turning point on \(C\).
  2. Show that the \(x\) coordinate of \(P\) is a solution of $$x = \left( \frac { 4 } { 3 } - \frac { \sqrt { x } } { 12 } \right) ^ { \frac { 2 } { 3 } }$$
  3. Use the iteration formula $$x _ { n + 1 } = \left( \frac { 4 } { 3 } - \frac { \sqrt { x _ { n } } } { 12 } \right) ^ { \frac { 2 } { 3 } } \quad \text { with } x _ { 1 } = 2$$ to find (i) the value of \(x _ { 2 }\) to 5 decimal places,
    (ii) the \(x\) coordinate of \(P\) to 5 decimal places.