- The function \(g\) is defined by
$$g ( x ) = \frac { 3 \ln ( x ) - 7 } { \ln ( x ) - 2 } \quad x > 0 \quad x \neq k$$
where \(k\) is a constant.
- Deduce the value of \(k\).
- Prove that
$$\mathrm { g } ^ { \prime } ( x ) > 0$$
for all values of \(x\) in the domain of g .
- Find the range of values of \(a\) for which
$$g ( a ) > 0$$