A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Trig Proofs
Q15
Edexcel Paper 1 2021 October — Question 15
Exam Board
Edexcel
Module
Paper 1 (Paper 1)
Year
2021
Session
October
Topic
Trig Proofs
(i) Use proof by exhaustion to show that for \(n \in \mathbb { N } , n \leqslant 4\)
$$( n + 1 ) ^ { 3 } > 3 ^ { n }$$ (ii) Given that \(m ^ { 3 } + 5\) is odd, use proof by contradiction to show, using algebra, that \(m\) is even.
This paper
(15 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11
Q12
Q13
Q14
Q15