Edexcel Paper 1 2021 October — Question 9

Exam BoardEdexcel
ModulePaper 1 (Paper 1)
Year2021
SessionOctober
TopicGeneralised Binomial Theorem and Partial Fractions

9. $$f ( x ) = \frac { 50 x ^ { 2 } + 38 x + 9 } { ( 5 x + 2 ) ^ { 2 } ( 1 - 2 x ) } \quad x \neq - \frac { 2 } { 5 } \quad x \neq \frac { 1 } { 2 }$$ Given that \(\mathrm { f } ( x )\) can be expressed in the form $$\frac { A } { 5 x + 2 } + \frac { B } { ( 5 x + 2 ) ^ { 2 } } + \frac { C } { 1 - 2 x }$$ where \(A\), \(B\) and \(C\) are constants
    1. find the value of \(B\) and the value of \(C\)
    2. show that \(A = 0\)
    1. Use binomial expansions to show that, in ascending powers of \(x\) $$f ( x ) = p + q x + r x ^ { 2 } + \ldots$$ where \(p , q\) and \(r\) are simplified fractions to be found.
    2. Find the range of values of \(x\) for which this expansion is valid.