Edexcel Paper 1 2019 June — Question 4

Exam BoardEdexcel
ModulePaper 1 (Paper 1)
Year2019
SessionJune
TopicGeneralised Binomial Theorem
TypeFactoring out constants before expansion

  1. (a) Find the first three terms, in ascending powers of \(x\), of the binomial expansion of
$$\frac { 1 } { \sqrt { 4 - x } }$$ giving each coefficient in its simplest form. The expansion can be used to find an approximation to \(\sqrt { 2 }\)
Possible values of \(x\) that could be substituted into this expansion are:
  • \(x = - 14\) because \(\frac { 1 } { \sqrt { 4 - x } } = \frac { 1 } { \sqrt { 18 } } = \frac { \sqrt { 2 } } { 6 }\)
  • \(x = 2\) because \(\frac { 1 } { \sqrt { 4 - x } } = \frac { 1 } { \sqrt { 2 } } = \frac { \sqrt { 2 } } { 2 }\)
  • \(x = - \frac { 1 } { 2 }\) because \(\frac { 1 } { \sqrt { 4 - x } } = \frac { 1 } { \sqrt { \frac { 9 } { 2 } } } = \frac { \sqrt { 2 } } { 3 }\)
    (b) Without evaluating your expansion,
    1. state, giving a reason, which of the three values of \(x\) should not be used
    2. state, giving a reason, which of the three values of \(x\) would lead to the most accurate approximation to \(\sqrt { 2 }\)