12.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{fa7abe9f-f5c0-4578-afd1-73176c717536-24_798_792_246_639}
\captionsetup{labelformat=empty}
\caption{Figure 3}
\end{figure}
Figure 3 shows a sketch of the curve \(C\) with equation \(y = 3 x - 2 \sqrt { x } , x \geqslant 0\) and the line \(l\) with equation \(y = 8 x - 16\)
The line cuts the curve at point \(A\) as shown in Figure 3.
- Using algebra, find the \(x\) coordinate of point \(A\).
- \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{fa7abe9f-f5c0-4578-afd1-73176c717536-24_636_780_1585_644}
\captionsetup{labelformat=empty}
\caption{Figure 4}
\end{figure}
The region \(R\) is shown unshaded in Figure 4. Identify the inequalities that define \(R\).