OCR H240/01 2022 June — Question 4

Exam BoardOCR
ModuleH240/01 (Pure Mathematics)
Year2022
SessionJune
TopicQuadratic Functions

4
  1. Write \(2 x ^ { 2 } + 6 x + 7\) in the form \(p ( x + q ) ^ { 2 } + r\), where \(p , q\) and \(r\) are constants.
  2. State the coordinates of the minimum point on the graph of \(y = 2 x ^ { 2 } + 6 x + 7\).
  3. Hence deduce
    • the minimum value of \(2 \tan ^ { 2 } \theta + 6 \tan \theta + 7\),
    • the smallest positive value of \(\theta\), in degrees, for which the minimum value occurs.