A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Stats And Pure
Quadratic Functions
Q4
OCR H240/01 2022 June — Question 4
Exam Board
OCR
Module
H240/01 (Pure Mathematics)
Year
2022
Session
June
Topic
Quadratic Functions
4
Write \(2 x ^ { 2 } + 6 x + 7\) in the form \(p ( x + q ) ^ { 2 } + r\), where \(p , q\) and \(r\) are constants.
State the coordinates of the minimum point on the graph of \(y = 2 x ^ { 2 } + 6 x + 7\).
Hence deduce
the minimum value of \(2 \tan ^ { 2 } \theta + 6 \tan \theta + 7\),
the smallest positive value of \(\theta\), in degrees, for which the minimum value occurs.
This paper
(12 questions)
View full paper
Q1
Q2
Q3
1
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11
Q12