OCR H240/01 2022 June — Question 2

Exam BoardOCR
ModuleH240/01 (Pure Mathematics)
Year2022
SessionJune
TopicTrig Proofs

2
  1. Given that \(a\) and \(b\) are real numbers, find a counterexample to disprove the statement that, if \(a > b\), then \(a ^ { 2 } > b ^ { 2 }\).
  2. A student writes the statement that \(\sin x ^ { \circ } = 0.5 \Longleftrightarrow x ^ { \circ } = 30 ^ { \circ }\).
    1. Explain why this statement is incorrect.
    2. Write a corrected version of this statement.
  3. Prove that the sum of four consecutive multiples of 4 is always a multiple of 8 .