OCR H240/01 2021 November — Question 11

Exam BoardOCR
ModuleH240/01 (Pure Mathematics)
Year2021
SessionNovember
TopicIntegration by Substitution

11
  1. Use the substitution \(u ^ { 2 } = x ^ { 2 } + 3\) to show that \(\int \frac { 4 x ^ { 3 } } { \sqrt { x ^ { 2 } + 3 } } \mathrm {~d} x = \frac { 4 } { 3 } \left( x ^ { 2 } - 6 \right) \sqrt { x ^ { 2 } + 3 } + c\).
  2. In this question you must show detailed reasoning.
    \includegraphics[max width=\textwidth, alt={}, center]{6b766f5c-8533-4e0c-bb10-0d9949dc777b-7_620_951_1836_317} The graph shows part of the curve \(y = \frac { 4 x ^ { 3 } } { \sqrt { x ^ { 2 } + 2 } }\).
    Find the exact area enclosed by the curve \(y = \frac { 4 x ^ { 3 } } { \sqrt { x ^ { 2 } + 3 } }\), the normal to this curve at the point \(( 1,2 )\) and the \(x\)-axis.