Edexcel D2 — Question 4

Exam BoardEdexcel
ModuleD2 (Decision Mathematics 2)
TopicTravelling Salesman

4. This question should be answered on the sheet provided. A travelling salesman problem relates to the network represented by the following table of distances in kilometres. You may assume that the network satisfies the triangle inequality.
AB\(C\)D\(E\)\(F\)G\(H\)
A-85593147527441
B85-1047351684355
C59104-5462886145
D317354-40596578
E47516240-567168
\(F\)5268885956-5349
G744361657153-63
H41554578684963-
Showing your method clearly, use
  1. the nearest neighbour algorithm, beginning with \(A\),
  2. Prim's algorithm with \(H\) deleted,
    to show that the minimum distance travelled, \(d \mathrm {~km}\), satisfies the inequality \(357 \leq d \leq 371\).
    (11 marks)