OCR MEI D2 2014 June — Question 3

Exam BoardOCR MEI
ModuleD2 (Decision Mathematics 2)
Year2014
SessionJune
TopicThe Simplex Algorithm

3 Three products, A, B and C are to be made.
Three supplements are included in each product. Product A has 10 g per kg of supplement \(\mathrm { X } , 5 \mathrm {~g}\) per kg of supplement Y and 5 g per kg of supplement Z . Product B has 5 g per kg of supplement \(\mathrm { X } , 5 \mathrm {~g}\) per kg of supplement Y and 3 g per kg of supplement Z .
Product C has 12 g per kg of supplement \(\mathrm { X } , 7 \mathrm {~g}\) per kg of supplement Y and 5 g per kg of supplement Z .
There are 12 kg of supplement X available, 12 kg of supplement Y , and 9 kg of supplement Z .
Product A will sell at \(\pounds 7\) per kg and costs \(\pounds 3\) per kg to produce. Product B will sell at \(\pounds 5\) per kg and costs \(\pounds 2\) per kg to produce. Product C will sell at \(\pounds 4\) per kg and costs \(\pounds 3\) per kg to produce. The profit is to be maximised.
  1. Explain how the initial feasible tableau shown in Fig. 3 models this problem. \begin{table}[h]
    Pabcs 1s 2s 3RHS
    1- 4- 3- 10000
    01051210012000
    055701012000
    05350019000
    \captionsetup{labelformat=empty} \caption{Fig. 3}
    \end{table}
  2. Use the simplex algorithm to solve this problem, and interpret the solution.
  3. In the solution, one of the basic variables appears at a value of 0 . Explain what this means. There is a contractual requirement to provide at least 500 kg of product A .
  4. Show how to incorporate this constraint into the initial tableau ready for an application of the two-stage simplex method. Briefly describe how the method works. You are not required to perform the iterations.
This paper (3 questions)
View full paper