OCR MEI D2 2011 June — Question 4

Exam BoardOCR MEI
ModuleD2 (Decision Mathematics 2)
Year2011
SessionJune
TopicThe Simplex Algorithm

4 A small alpine hotel is planned. Permission has been obtained for no more than 60 beds, and these can be accommodated in rooms containing one, two or four beds. The total floor areas needed are \(15 \mathrm {~m} ^ { 2 }\) for a one-bed room, \(25 \mathrm {~m} ^ { 2 }\) for a two-bed room and \(40 \mathrm {~m} ^ { 2 }\) for a four-bed room. The total floor area of the bedrooms must not exceed \(700 \mathrm {~m} ^ { 2 }\). Marginal profit contributions per annum, in thousands of euros, are estimated to be 5 for a one-bed room, 9 for a two-bed room and 15 for a four-bed room.
  1. Formulate a linear programming problem to find the mix of rooms which will maximise the profit contribution within the two constraints.
  2. Use the simplex algorithm to solve the problem, and interpret your solution. It is decided that, for marketing reasons, at least 5 one-bed rooms must be provided.
  3. Solve this modified problem using either the two-stage simplex method or the big-M method. You may wish to adapt your final tableau from part (ii) to produce an initial tableau, but you are not required to do so.
  4. The simplex solution to the revised problem is to provide 5 one-bed rooms, 15 two-bed rooms and 6.25 four-bed rooms, giving a profit contribution of \(€ 253750\). Interpret this solution in terms of the real world problem.
  5. Compare the following solution to your answer to part (iv): 8 one-bed rooms, 12 two-bed rooms and 7 four-bed rooms. Explain your findings.