12.
\begin{figure}[h]
\captionsetup{labelformat=empty}
\caption{Figure 2}
\includegraphics[alt={},max width=\textwidth]{c4c64221-0373-4be9-abe3-5ff281922cdb-11_618_1211_253_253}
\end{figure}
A company has 3 warehouses \(W _ { 1 } , W _ { 2 }\), and \(W _ { 3 }\). It needs to transport the goods stored there to 2 retail outlets \(R _ { 1 }\) and \(R _ { 2 }\). The capacities of the possible routes, in van loads per day, are shown in Fig 2. Warehouses \(W _ { 1 } , W _ { 2 }\) and \(W _ { 3 }\) have 14, 12 and 14 van loads respectively available per day and retail outlets \(R _ { 1 }\) and \(R _ { 2 }\) can accept 6 and 25 van loads respectively per day.
- On Diagram 1 on the answer sheet add a supersource \(W\), a supersink \(R\) and the appropriate directed arcs to obtain a single-source, single-sink capacitated network. State the minimum capacity of each arc you have added.
- State the maximum flow along
- \(W \quad W _ { 1 } \quad A \quad R _ { 1 } \quad R\),
- \(W W _ { 3 } \quad C \quad R _ { 2 } \quad R\).
- Taking your answers to part (b) as the initial flow pattern, use the labelling procedure to obtain a maximum flow through the network from \(W\) to \(R\). Show your working on Diagram 2. List each flowaugmenting route you use, together with its flow.
- From your final flow pattern, determine the number of van loads passing through \(B\) each day.